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Abstract

Purpose—To propose and validate Structural Correlation based Outlier REjection (SCORE), a 

novel algorithm for removal of artifacts arising from outlier control-label pairs in 2D Arterial Spin 

Labeling (ASL) data.

Materials and Methods—The proposed method was assessed with respect to other state-of-the-

art ASL signal processing approaches using 2D pulsed ASL data obtained with 3T Siemens 

scanner from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database. Longitudinal 

data from control participants acquired 3 months apart were used to assess within subject 

coefficient of variation (wsCV) based on the assumption that the optimal signal processing 

strategy will minimize control subject retest variability. SCORE was further evaluated by 

determining its sensitivity for distinguishing patients with Alzheimer’s disease (AD) from 

Controls based on hypoperfusion in predefined ROIs that are known to be sensitive to AD related 

changes.

Results—SCORE coupled with a preprocessing step to discard few extreme outliers (combined 

algorithm referred to as SCORE+) reduced wsCV up to 21% in grey matter and 39% in smaller 

ROIs compared to the reference algorithms. It also provided an average increase in effect size for 

patient-control differences of 50% compared to other algorithms in a priori ROIs sensitive to AD 
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related changes. This increase was statistically significant (p<0.05) for the majority of the ROIs 

and methods as evaluated by permutation tests.

Conclusion—CBF maps generated with SCORE or SCORE+ provide improved retest reliability 

in control subjects while simultaneously increasing sensitivity to pathological CBF effects 

between controls and patients.
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INTRODUCTION

Cerebral Blood Flow (CBF)1, 2 is defined as the volume of blood flowing through a specific 

region of brain tissue per unit time. It is a key physiological quantity used as a biomarker for 

brain function.3, 4 Arterial Spin Labeled (ASL) perfusion MRI5, 6 provides a non-invasive 

approach for quantifying regional CBF without the use of exogenous tracers or radioactivity. 

Instead, ASL uses arterial blood water as an endogenous tracer to measure CBF by 

magnetically labeling the inflowing arterial blood with radiofrequency pulses. The perfusion 

signal is acquired as the difference between images with and without arterial spin labeling 

(referred as tagged or labeled and control images respectively), which is subsequently 

converted into quantitative CBF based on established models of blood flow.7, 8 Absolute 

quantification can also be obtained by calibrating the measurements using CBF measured 

from independently acquired method like phase contrast MRI.9 The difference signal 

between the tagged and control images usually accounts for around 1% of the background 

signal,10 resulting in a low signal to noise ratio (SNR). To compensate for the low SNR, 

multiple tag-control pairs are typically acquired and averaged.

Arterial spin labeling can be achieved using various approaches, the most popular and 

widely used of which are pulsed ASL (PASL)11 and pseudo continuous ASL (PCASL).12 

Because of its higher SNR, PCASL is presently the recommended labeling strategy.13 The 

effects of ASL can be sampled using a variety of imaging strategies. Most ASL data has 

been acquired with echo-planar imaging (EPI) owing to its speed and sensitivity, however 

3D ASL using stack-of-spiral fast spin echo (FSE)12 or gradient and spin echo (GRASE)14 

imaging are increasingly used and preferred. Background suppression (BS) of static brain 

signals can dramatically increase the temporal signal to noise ratio (TSNR) of ASL 

MRI15–17 and is optimally combined with a 3D imaging scheme.

CBF quantification using ASL is susceptible to artifacts originating from head motion or 

other contaminating sources. Typical ASL scans last for several minutes, resulting in several 

individual label and control image pairs, and the mean CBF map is obtained by averaging 

these pairs. Within this limited number of perfusion difference images, outliers with large 

positive or negative values can dominate the signal averaging process and the resulting mean 

CBF map.18, 19 Various signal processing strategies have been proposed to reduce artifacts in 

ASL CBF maps.18–28 Miranda et al.28 proposed to discard outliers originating from motion 

by estimating motion in the label-control time series and rejecting images with more than 2 

mm translation or 1.5° rotation between successive images. Head motion (both the absolute 
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motions and motion difference between each control and its corresponding label image) and 

global signal deviations were also used to identify outlier time points in Wang et al.20 Tan et 

al.18 proposed to detect outliers based on mean and standard deviation within individual 

CBF volumes and reject the volume if the quantities are outside some predefined range from 

the mean of those quantities across time. Maumet et al.24 used a robust statistical approach 

to compute the representative map. An adaptive outlier cleaning approach (AOC) proposed 

by Wang et al.19 used the mean CBF as the reference and iteratively removed time-points 

based on the degree to which they vary from the reference. Outliers identified based on head 

motion estimations were removed before calculating the initial mean in the AOC.

Several conditions can limit the efficacy of the above methods for rejecting outliers. First, 

outliers may not all be associated with significant head motion. In addition, motion 

correction algorithms already at least partially reduce errors in the raw time series data 

introduced by motion. Hence, it is the residual uncorrected motion that should be considered 

for outlier detection and not necessarily the motion estimated by the motion correction 

algorithm, which have already been compensated. Second, when severe artifactual 

contamination is present in individual maps in the time series, they can dominate the mean 

CBF map. Consequently, application of methods based on similarity with mean CBF map 

might result in the undesirable effect of preserving the contaminating tag-control pair, or 

even worse removing “good” tag-control pairs.

Artifacts originating from outliers is most common when sub-optimal labeling techniques, 

such as the PASL, are applied and when background suppression15 is not available. While a 

number of groups have begun to use 3D ASL acquisitions with BS and better labeling 

properties,29 less optimal strategies are still being used because of their wide availability and 

experience in implementation. In addition, there is a considerable amount of data acquired 

with these approaches, e.g. the extensive Alzheimer’s Disease Neuroimaging Initiative 

(ADNI) database (adni.loni.usc.edu), for which improved signal processing schemes are 

needed to derive optimal physiological information.

The goal of this work is to present a novel strategy for detecting and discarding individual 

CBF volumes in ASL time series that contaminate mean CBF maps. The algorithm is 

dubbed as structural correlation based outlier rejection (SCORE) based on the principle from 

which it was derived. The performance of the proposed method was compared with several 

state-of-the-art reference algorithms using the premise that the best algorithm should provide 

maximum repeatability in control subjects, while simultaneously maximizing the differences 

between control and patient cohort expected to be differing in CBF values.

MATERIALS AND METHODS

Cohort

The data acquired in this study were acquired in ADNI-2, which is the third phase of ADNI 

(after ADNI and ADNI-GO). More information can be obtained at http://adni-info.org. 

ADNI was launched in 2003 as a public-private partnership, led by Principal Investigator 

Michael W. Weiner, MD. The primary goal of ADNI has been to test whether serial 

magnetic resonance imaging (MRI), positron emission tomography (PET), other biological 
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markers, and clinical and neuropsychological assessment can be combined to measure the 

progression of mild cognitive impairment (MCI) and early Alzheimer’s disease (AD). 

Baseline scans for 60 “amyloid-β negative” controls (age: 71.4±6.5 years, range: 56–85 

years, Gender: 53% female) and 49 “amyloid-β positive” AD patients (age: 74.4±8.7 years, 

range: 56–89 years, gender: 47% female) were used for assessing group differences. 51 of 

these amyloid-β negative controls had a second MRI 3 months after their baseline scan, and 

these subjects were considered for assessing repeatability. All participants had signed 

written, informed consent for the brain MRI and for all other procedures, as reviewed and 

approved by the institutional review boards at each clinical site.

MRI Data Acquisition

ADNI ASL data were acquired using the Siemens product PICORE PASL sequence with the 

Q2TIPs technique for defining the spin bolus. The acquisition parameters are TR/

TE=3400/12 ms, TI1/TI=700/1900 ms, FOV=256 mm, 24 sequential 4 mm thick slices with 

a 25% gap between the adjacent slices, partial Fourier factor = 6/8, bandwidth=2368 Hz/px, 

and imaging matrix = 64 × 64. The first volume of the 105 ASL acquisitions was used as the 

M0 image with the remaining 104 volumes used as 52 control-label pairs. Structural images 

in ADNI were acquired using a 3D MPRAGE T1-weighted sequence with TR/

TE=2300/2.98 ms, 176 sagittal slices, within plane FOV=256×240mm2, voxel 

size=1.1×1.1×1.2 mm3, flip angle=90, bandwidth=240 Hz/px.

ASL Pre-Processing

ASL data were pre-processed using custom MATLAB scripts (The Mathworks Inc. Natick, 

Massachusetts, USA), SPM8 (Wellcome Department of Imaging Neuroscience, London, 

UK, http://www.fil.ion.ucl.ac.uk/spm/software/spm8/) and ASL toolbox.20 Each raw EPI 

time series was motion corrected using the method by Wang21. The method consists of 

estimating a 6-parameter rigid body motion spatial transformation, and subsequently 

regressing out the spurious motion component caused by the systematic label/control 

alternation from the motion parameters before applying the transformation on the images. 

The mean EPI images were automatically coregistered to the high-resolution T1 images 

using SPM8. In parallel, the structural images were segmented into grey matter (GM), white 

matter (WM) and cerebrospinal fluid (CSF) tissue probability maps (TPMs) using the 

segmentation tool in SPM8. Binary masks comprising of GM, WM and ventricular CSF 

were created to restrict the computation of CBF within these masks. Image masks and the 

TPMs were subsequently resliced to the native ASL space.

The M0 image of each subject was co-registered to the mean EPI image and smoothed using 

an isotropic Gaussian kernel with full-width-half-max (FWHM)=5mm to avoid noise 

propagation13. Pairwise subtraction of the resulting images was performed and the 

difference images were converted to absolute CBF maps using the formula13
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where ΔM is control-label difference, λ is the blood:brain partition coefficient, ω is the post 

labeling delay, T1,blood is the T1 of blood, α is the tagging efficiency, M0 is the equilibrium 

magnetization of the brain (separately acquired, coregistered to mean EPI and smoothed) 

and τ is the labeling duration. In the present work, λ=0.9ml/g, ω = 1.9s, T(1,blood)=1650 ms, 

α=0.98, and τ=700ms. Voxels outside the brain mask were set to zero. The CBF time series 

was subsequently used for the proposed outlier rejection scheme, as well as the other 

reference methods.

A local template for all subjects was generated using Diffeomorphic Anatomical 

Registration Through Exponentiated Lie Algebra (DARTEL)30 based on their segmented 

grey and white matter probability maps. The local template was subsequently registered to 

the MNI space using a linear affine transformation. These two transformations were used to 

map the CBF maps and grey matter TPM to the MNI space. The images in the MNI space 

were smoothed with a FWHM=8mm isotropic Gaussian kernel to avoid potential errors in 

transformation and to enhance matching of voxels. The MNI-normalized GM TPM was 

binarized with a threshold of 0.4 to create a grey matter mask. Region of interest (ROI) 

analyses for each subject were performed only within this mask.

SCORE Algorithm

The SCORE algorithm iteratively discards outlier CBF volumes and is detailed below.

Identification Of A Potential Outlier—Outlier identification in SCORE is based on our 

hypothesis that for a mean CBF map with significant spatially constrained artifacts caused 
by a few corrupted volumes, the individual volume in the time series contributing most to 

the artifact of the mean CBF is the one that shows the highest spatial correlation with the 

mean. Non-outliers on the other hand represent a mixture of true mean CBF map, random 

noise and physiological CBF fluctuations, and show a smaller correlation because of the 

dominance of the random noise in individual volumes. While temporal averaging reduces 

the random noise in the resulting mean, the artifacts present in the outliers would remain in 

the mean CBF map. So the artifact-containing mean CBF would show a higher similarity to 

outliers compared to non-outliers. Hence the CBF volume having highest spatial correlation 

with the intermediate mean CBF map is iteratively removed, followed by an update of the 

intermediate mean using the remaining CBF volumes until no more outliers are detected. An 

example of mean CBF map, most correlated CBF volume and the output after removing 18 

most correlated CBF images for a sample dataset is shown in the left, middle and right 

subplots of Fig. 1 respectively.

The above iterative procedure of discarding the most correlated volume with the mean CBF 

requires a stopping criterion. Hence, categorization of the most correlated volume as outlier 

or non-outlier is an important step of this process and is considered next.

Iteration Stopping Criterion—The stopping criterion used in SCORE assumes that the 

variability within each tissue type has three components: within tissue heterogeneity, random 

noise and artifact. Under ideal conditions, individual CBF maps in the time series are 

contaminated by random noise only and not by structured artifacts of large magnitude. 

Temporal averaging of the CBF maps reduces the random noise and in turn reduces the 
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variance within each tissue type, viz. GM, WM, and CSF. On the other hand, addition of an 

outlier volume containing spatially constrained artifact to this mean CBF will increase the 

variance within the tissue where the artifact is present. Hence, the spatial variance within 

each tissue type is an indicator of the presence of artifact. An increase in the variance from 

the preceding iteration after removing the most correlated pair implies an effect of removal 

of random noise rather than structured artifact. In contrast, a decrease in variance from the 

previous iteration would imply removal of an outlier volume containing structured noise. 

Therefore, as a criterion of stopping the iteration of removing the most correlated pair, the 

variance within each tissue type can be monitored. In this work, we considered the pooled 

variance, defined as

where Vk is the variance and Nk is the number of voxels in the kth tissue (k=GM,WM,CSF), 

and the iteration is stopped when there is an increase in the pooled variance from the 

previous iteration.

Preprocessing to Remove Extreme Outliers—Using a preprocessing step that 

discards a small number of extreme outliers before running SCORE can further enhance its 

performance. Such outliers are identified as CBF volumes with mean CBF abnormally 

different compared to overall distribution of their values in the time series. We computed 

mean CBF in GM (referred to as mean GM-CBF below) of the CBF volumes in the time 

series and discarded volumes with mean GM-CBF outside 2.5 standard deviations of their 

means. Since the mean and standard deviation can be impacted by large outliers, instead 

median and 1.4826 × median absolute deviation31 were used as robust measures of 

distribution center and spread respectively. Fig. 2 shows a plot of mean GM-CBF of the CBF 

volumes in the time series for a sample subject with the exclusion limits indicated in dotted 

lines. Two outlier volumes having noticeably larger mean GM-CBF values compared to the 

other volumes were identified as outliers and discarded. Note that this procedure can 

potentially retain volumes having non-physiological negative mean GM-CBF. However, 

discarding all volumes having negative mean GM-CBF can systematically bias the mean 

CBF to a higher value, since some negative CBF values are expected at the level of 

individual control-label volumes due to noise.

SCORE along with the preprocessing step has been referred to as SCORE+ in the remainder 

of this paper. The complete flow chart of SCORE+ is shown in Fig. 3.

Comparison Methods

The performance of SCORE and SCORE+ was compared with several alternative algorithms 

that represent the state-of-the-art in published signal processing strategies. As the first 

reference method, the basic simple average (labeled as SA) of all the CBF volumes in the 

time series was considered for comparison. Second, the mean and standard deviation based 

filter18 was implemented (labeled as MSD). The method computes the mean and standard 

deviation of the intensities within the brain for each CBF volume (as explained above in 
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ASL pre-processing section) in the time series and removes those volumes as outliers, if the 

z-scores of the means and the standard deviations are outside some predefined range. 

Specifically, denoting mi and si as the global mean and standard deviations of each CBF 

volume in the time series, a volume is detected as outlier if it satisfies one of the following 

criteria18

The remaining volumes are averaged to compute the final CBF map. Third, the method 

proposed by Maumet et al.24 was used. This method estimates the intensity at each voxel of 

the final CBF map by using Huber’s M-estimation (labeled as HME) of the CBF values 

along the temporal direction corresponding to that voxel. Fourth, a pipeline proposed by 

Fazlollahi et al.27 was used that adapts a GLM analysis for confound (nuisance parameter) 

removal from the raw EPI time series, similar to the work by Wang and others19, 21. 

Confounds consist of estimated motion parameters, global signal and also signal from CSF 

in which there is no neural activity.23 The method is labeled as nuisance cleaning (NC). The 

final comparison method considered in this paper was the adaptive outlier cleaning (labeled 

as AOC) approach19, which can be considered as a further refinement of NC. After 

application of nuisance cleaning, it removes CBF volumes based on head motion, global 

signal, and finally employs an iterative approach to remove the CBF volumes that are least 

correlated with the mean CBF map. Conceptually the last step of AOC is opposite to 

SCORE. The abbreviations of the reference algorithms are summarized in Table 1.

Details of Statistical Analyses

We report the average number of CBF volumes discarded by SCORE, preprocessing step of 

SCORE+, MSD, and AOC. The other algorithms do not discard volumes explicitly. For the 

SCORE+ preprocessing step, we also report the average absolute difference between median 

of the time series and the mean GM-CBF of the discarded volume expressed in terms of 

robust standard deviation of the series. Furthermore, for each method, we compared the 

number of volumes discarded in controls and AD patients based on two sample T tests. For 

all statistical hypothesis testing, p<0.05 was considered significant.

Motion is usually considered as the primary source of artifact present in ASL CBF volumes. 

We investigated how relative motion between controls and their corresponding label images 

are associated with outliers in the time series based on the estimated motion parameters used 

to realign the raw EPI time series. The rigid-body motion estimation algorithm estimates 6 

parameters, 3 translational (x, y, z) and 3 rotational (pitch, roll, yaw), corresponding to each 

EPI volume. We computed relative motion as the absolute difference between SPM 

generated motion parameters of the corresponding control and label images. These relative 

motion parameters in retained and SCORE+ discarded volumes were compared using two 

sample T tests.
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SCORE and SCORE+ were first compared with the reference algorithms based on visual 

inspection. Artifacts generally manifested as extensive negative or extremely high CBF 

values in resulting CBF maps. In addition, quantitative comparisons were performed based 

on the retest variability and patient-control differences described below.

Retest Variability—Retest variability using repeated scans at an interval of 3 months from 

51 ADNI control subjects was used as a metric for evaluating the effectiveness of the signal-

processing algorithms. The assumption was that an optimal strategy will result in minimum 

variation between CBF values within the same ROI in two sets of scans of controls obtained 

only a few months apart. Denoting CBFt,k and CBFr,k as the mean CBF within a specific 

ROI for the test and retest sessions of the kth subject, the coefficient of variation for each 

subject (CVk for the kth subject) and the within-subject CV (wsCV) for that specific ROI 

were computed as

where std denotes the standard deviation operation and N is the number of subjects. The 

denominator in the expression of CV used the mean value across subjects and sessions to 

make it less susceptible to outliers. We report the results of wsCV for each method-ROI 

combination. In addition, to analyze the distribution of CV across methods and ROIs, we 

compared the boxplots of CV for each method-ROI combination.

Sensitivity to Patient-Control Group Difference—Although improved test-retest 

reliability is a desirable property, it cannot be considered as the sole criterion to validate a 

signal processing strategy. For example, a homogenous map of fixed value for all the 

subjects will result in maximum agreement, but is meaningless physiologically. Hence, in 

addition to test-retest reliability, we assessed the efficacy of the algorithms by examining 

their sensitivities in evaluating control-patient differences. In particular, we looked at the 

differences in CBF values between controls and AD patients within hippocampus, precuneus 

and posterior cingulate cortex, regions that are known to be sensitive to AD-related CBF 

changes32–34. The motor cortex was also included in the comparison as a control region, as 

mean CBF in this region is relatively unchanged in AD relative to controls. We computed 

effect sizes between controls and patients within each ROI as the difference between mean 

CBFs of the two groups divided by the pooled standard deviation of the two groups. 

Subsequently, the effect sizes obtained from the different algorithms were compared based 

on permutation testing with 10,000 permutations. We also report the mean CBFs for each 

group-ROI combination and p values corresponding to group differences based on two-

sample t tests.

RESULTS

We analyzed a total of 160 data sets (60 controls, 51 of which repeated, and 49 AD patients), 

each having 52 CBF volumes (or equivalently control-label pairs). Out of these 52 volumes, 

an average of 9.7±5.8 (min: 0, max: 31) volumes were discarded based on SCORE. In 
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addition, 2.1±1.7 (min: 0, max: 7) volumes were discarded in the preprocessing step of 

SCORE+. The mean GM-CBF in these volumes deviated from their median in the time 

series by 3.7±1.4 robust standard deviations. There were no statistically significant 

differences between volumes rejected in Controls and AD patients based on mean GM-CBF 

(p=0.45) or structural correlation (p=0.83) criteria. The number of volumes discarded by 

SCORE+ was significantly higher (p<0.0001) than in MSD (3.9±1.5) or AOC (7.9±3.2). 

Only AOC discarded higher number of volumes in patients than in controls (p=0.01).

Both translational and rotational relative motion components associated with volumes 

discarded by SCORE+ were found to be significantly higher (p<0.001) than in retained 

volumes. Translation in y direction and rotational pitch showed the largest differences 

between the two groups. The small number of volumes discarded by the preprocessing step 

were associated with the largest motion parameters.

Fig. 4 shows representative slices from CBF maps of selected subjects obtained using 

different algorithms. The first column shows example of a CBF map with no visible artifacts 

and all the algorithms performed comparably. CBF maps of subjects 2–4 obtained using SA 

had noticable artifacts manifested as extensive negative CBF values. The yellow arrows 

point to locations of these artifacts. While the artifacts are largely present in the output of the 

other comparing algorithms, SCORE and SCORE+ showed reduced artifacts in the resulting 

maps. For example, the subcortical grey matter structures are not visible in the CBF maps of 

subject 3 obtained from any of the reference algorithms, whereas SCORE and SCORE+ 

provided a much better visualization of these structures. Red arrows in the CBF map of 

subject 2 provides an example of artifact that was not removed by any of the algorithms, 

including SCORE and SCORE+.

Fig. 5 shows the performance of each algorithm in the repeatability study. The top subplot 

shows the coefficients of variation of mean CBF values obtained from control subjects 

scanned twice, 3 months apart. The box plots are grouped based on the ROIs while the 

performance of each algorithm for that ROI is demonstrated within each group. SCORE 

(dark green) provided lowest maximum CV among the different methods while producing 

lowest number of outliers in majority of the cases. SCORE+ (yellow) provided further 

improvement on top of SCORE. The bottom subplot shows wsCVs grouped similarly. 

Except in motor cortex, both SCORE and SCORE+ provided noticeable reductions in 

wsCVs with SCORE+ being consistently lowest. SCORE provided an improvement of 5–

15% in larger ROIs such as GM and whole brain while improvement was 5–33% in the 

smaller ROIs. Improvement with SCORE+ ranged between 14% and 24% in larger ROIs 

and 10–39% in smaller ROIs. In the motor cortex, wsCV with SCORE increased by 2% 

compared to HME and 4% compared to NC and decreased by about 1% compared to the 

other algorithms. SCORE+ had 1% increase in wsCV compared to NC, but 1–4% decrease 

compared to the other algorithms. The other algorithms produced mixed results with MSD 

providing marginally improved performance compared to the other algorithms in most of the 

cases. AOC provided marginally weaker agreement compared to NC, indicating that 

potentially incorrect volumes were removed in the outlier rejection process.
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Fig. 6 shows effect sizes for discriminating 49 AD patients from 60 controls based on mean 

CBF in precuneus, posterior cingulate cortex, hippocampus and motor cortex ROIs for each 

of the data cleaning methods, while Table 2 lists the relevant statistics. An increased effect 

size using SCORE+ is readily observable for all ROIs. Based on permutation tests, SCORE+ 

performed either significantly better (p<0.05) or trended towards significance (P<0.12) for 

all methods and regions except hippocampus for MSD, where the performance was 

comparable (p=0.36). SCORE also showed improvements in precuneus and PCC while 

performance was worse than MSD in hippocampus. Effect sizes in M1 are much smaller 

compared to the other ROIs implying relative stability of this region in the AD population. 

The first two columns of Table 2 provide the means and standard deviation values for the 

controls and the patients. In addition, the table also shows the effect sizes (same as that 

shown in Fig. 6) and the p values corresponding to two sample T tests for each method 

corresponding to different ROIs. The standard deviations were lowest in the case of SCORE 

and SCORE+ in almost all the cases. In the case of hippocampus, all the algorithms 

provided statistically significant group differences. Similar results were obtained for 

precuneus as well, except for AOC. For PCC, only MSD, SCORE and SCORE+ produced 

group differences that were statistically significant. As expected, none of the algorithms 

show statistically significant group differences in the motor cortex. As with the test-retest 

example, AOC demonstrated weaker performance compared to NC.

Discussion

Using 2D PASL data obtained from the ADNI2 database, the results of this study 

demonstrate that both repeatability in controls and patient-control discrimination can be 

improved through data cleaning, with the SCORE and SCORE+ algorithm outperforming 

comparison methods from the literature18, 19, 24, 27. SCORE exploits the notion that artifacts 

may dominate the mean CBF map derived from ASL time series data and hence individual 

volumes containing artifact show a high spatial correlation with the mean map. Although 

counterintuitive, SCORE considers the most similar volume with the mean CBF as a 

potential outlier. All the other algorithms evaluated instead rely on the mean as the 

reference. For example, MSD is dependent on the overall mean of the individual means and 

standard deviations for each volume in the time series. Since similar artifacts might be 

present in multiple tag-control pairs, mean values may be dominated by artifact leading to 

retention of contaminating volumes. The HME method uses a voxel-wise outlier removal 

and is not constrained by the spatial structure of the outliers. The NC approach improves the 

temporal standard deviation by removing variability across time series, but this does not 

necessarily improve the mean CBF map. AOC did not improve on NC suggesting an 

inability to identify the outliers correctly and potentially deleting non-outlier volumes for 

very noisy data because of its dependence of the corrupted mean CBF map as the reference. 

The number of volumes discarded in MSD and AOC were significantly lower than SCORE

+, indicating possible retention of artifacts in the data.

Although SCORE is based on the idea of removing the volume most similar to the mean, 

SCORE+ additionally incorporates a preprocessing step that relies on the dissimilarity with 

the median of the distribution of the mean GM-CBF values. The use of median and robust 

standard deviation makes this dissimilarity approach less susceptible to outliers than 
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approaches based on mean differences.35 Although the preprocessing step only removes a 

small number of volumes (2 on an average), its use seems to improve the performance of 

SCORE. A possible reason for this is that while SCORE is designed to remove spatially 

constrained artifacts, the correlation criterion is agnostic to any large global bias present in 

individual CBF volumes. For example, SCORE might not discard a CBF volume with 

notably different mean GM-CBF compared to the other volumes if the extreme values are 

not caused at least in part by spatially constrained artifacts. On the other hand, inclusion of 

such a volume will result in a different value of mean CBF. It should be noted that MSD, 

which performed comparably to SCORE in distinguishing controls and patients, also relies 

on discarding volumes with extreme global CBF values, although MSD uses mean and 

standard deviations and not their robust versions to identify outliers. In summary, the two 

steps of SCORE+ seem to be complementary and reduce errors in mean CBF maps 

differently.

Visual examination of the mean CBF map does not always reveal the superiority of one 

method over others, so we also relied on alternative quantitative validation strategies. As a 

potential biomarker of regional brain function, ASL CBF should have the characteristics of 

i) being reproducible in repeated scans within a homogeneous group, and ii) different 

between diverse groups. The validation strategies used in this study for the different signal 

processing algorithms reflect these two scenarios.

Repeatability was assessed in ADNI-2 control subjects scanned after a 3 month interval. 

Although CBF decreases with age even in healthy controls,36 3 months is a relatively short 

interval with respect to human aging. While there certainly can be real physiological 

variations and individual subjects can demonstrate a change in CBF over a period of three 

months, it is reasonable to assume that CBF remains stable across a group of adult controls 

within this interval. SCORE+ not only provided the lowest wsCV, which reflects the average 

deviation between scans across subjects, but it also produced the least number of outliers in 

majority of the cases. These findings suggest that SCORE+ is an effective and efficient 

cleaning strategy for 2D ASL data.

Comparison of ADNI-2 cognitively normal adults to patients with Alzheimer’s disease was 

used to assess for sensitivity to group differences, as differences in CBF between these two 

groups have been repeatedly demonstrated.32–34 All the algorithms demonstrated similar 

differences in mean values between controls and AD patients. However, the standard errors 

in SCORE and SCORE+ were lower than the other methods, which lead to the larger effect 

sizes for group discrimination, implying greater statistical power and lower sample sized for 

detecting significant group differences. The reduction in standard error can be attributed to a 

reduction in artifacts in SCORE and SCORE+.

SCORE+ is based on the idea of removing complete CBF volumes from ASL MRI time 

series. When a complete volume is discarded, voxels without artifact potentially suffer from 

loss of SNR. However, the average number of volumes rejected was ~12 out of 52 in the 

dataset considered in this study. Thus, any voxel lacking artifact would only have a 

 reduction in SNR on average. Accordingly, the effect of loss of SNR can 

be small compared to the detrimental effect of the larger artifacts in other brain regions. 
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Furthermore, most biomedical applications of ASL MRI primarily focus on group effects in 

which inter-subject variability (random effects) is the major source of noise. In such 

applications, sample size is much more important than the SNR of an individual 

measurement.37

The Control-AD group discrimination provided mostly medium effect sizes and none of the 

algorithms have been able to achieve a large effect size (>0.8). This is primarily because of 

the characteristic low SNR of PASL data. Better labeling and acquisition strategies coupled 

with background suppression may provide a better differentiation of the Control and 

diseased groups. In addition, although CBF decreases with age and the mean age of the 

population under study is over 70, the mean absolute CBF values within each ROI shown in 

Table 2 are all somewhat lower than might be expected. This may reflect lower labeling 

efficiency than expected and/or incorrect assumption of model parameters used to quantify 

CBF.

Motion appeared to be a significant source of artifacts as evident from our analysis. 

Although motion compensation algorithms are employed in ASL pre-processing, potential 

incorrect estimation and interpolation can result in residual motion effects. Rigid body 

motion compensation algorithms also cannot effectively remove secondary motion effects 

resulting from magnetic susceptibility differences. Motion effects between control and 

corresponding label images were found to contaminate the resulting CBF volumes 

significantly. Motion in y direction and pitch (both implying nodding motion) seemed to 

have the highest effect.

Although the results demonstrated in the current study are for PASL, SCORE can be applied 

to continuous or pseudo-continuous ASL (CASL and PCASL) without any modification. In 

addition, it can potentially also be applied to background suppressed 3D ASL with possible 

modification of the stopping criterion, though the expected benefit in the latter will likely be 

lower due to its higher temporal signal to noise ratio compared to ASL data acquired without 

BS29.

Since SCORE is based on a comparison between individual control-label volumes as 

compared to mean CBF across volumes, it does not remove artifacts that cancel out over 

successive volumes and so do not manifest in the mean CBF map. However, this is not a 

limitation for studies focusing on mean CBF rather than dynamic CBF changes. In addition, 

SCORE is an outlier rejection algorithm and hence CBF maps with residual artifacts can still 

occur when the contamination is not strictly due to artifacts in a small number of volumes. 

An example is shown in the result section where SCORE or SCORE+ did not remove some 

artifact in the posterior part of the brain of a subject. When small artifacts are present in 

almost all the volumes and each of them does not markedly influence the mean CBF, the 

effect of decrease in artifact due to removal of one time point is less than the increase in 

random noise due to one less volume available for averaging and these volumes are retained 

by the algorithm. Further signal processing on individual-voxel basis will be required to 

counteract this type of scenario.
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This study lacks a gold standard for regional CBF quantification, which could have provided 

an alternate validation strategy.15O H2O PET is currently considered as a gold standard for 

CBF, but it is difficult to obtain in a large cohort because the method is costly, logistically 

challenging, and requires exposure to ionizing radiation. Instead, repeatability of CBF values 

has often been used21, 27 to validate signal-processing algorithms. In this study, we 

specifically considered the ADNI dataset because of its large cohort size and the availability 

of both repeated measures and data acquired from well-defined patient and control 

populations. In addition, ADNI PASL data has low SNR and hence particularly benefits 

from data cleaning strategies. However, it would be desirable to compare the algorithms 

using additional data,38 ideally including a gold standard measure of CBF.

In conclusion, the outlier rejection strategy based on structural correlation, ideally coupled 

with the preprocessing step, was found to provide a superior solution of estimating a mean 

CBF map from 2D ASL data as compared to previously proposed approaches. The utility of 

this approach for background-suppressed 3D ASL data remains to be established, and 

strategies are also needed to remove residual artifacts present throughout ASL time series 

data rather than in outlier volumes.

Acknowledgments

Grant Support:

The study was supported by grants from the National Institutes of Health, R01 MH080729 and P41 EB015893. Dr. 
Shinohara was partially supported by P30 NS045839. Data collection and sharing for this project was funded by the 
Alzheimer's Disease Neuroimaging Initiative (ADNI) (National Institutes of Health Grant U01 AG024904) and 
DOD ADNI (Department of Defense award number W81XWH-12-2-0012). ADNI is funded by the National 
Institute on Aging, the National Institute of Biomedical Imaging and Bioengineering, and through generous 
contributions from the following: AbbVie, Alzheimer’s Association; Alzheimer’s Drug Discovery Foundation; 
Araclon Biotech; BioClinica, Inc.; Biogen; Bristol-Myers Squibb Company; CereSpir, Inc.; Eisai Inc.; Elan 
Pharmaceuticals, Inc.; Eli Lilly and Company; EuroImmun; F. Hoffmann-La Roche Ltd and its affiliated company 
Genentech, Inc.; Fujirebio; GE Healthcare; IXICO Ltd.; Janssen Alzheimer Immunotherapy Research & 
Development, LLC.; Johnson & Johnson Pharmaceutical Research & Development LLC.; Lumosity; Lundbeck; 
Merck & Co., Inc.; Meso Scale Diagnostics, LLC.; NeuroRx Research; Neurotrack Technologies; Novartis 
Pharmaceuticals Corporation; Pfizer Inc.; Piramal Imaging; Servier; Takeda Pharmaceutical Company; and 
Transition Therapeutics. The Canadian Institutes of Health Research is providing funds to support ADNI clinical 
sites in Canada. Private sector contributions are facilitated by the Foundation for the National Institutes of Health 
(www.fnih.org). The grantee organization is the Northern California Institute for Research and Education, and the 
study is coordinated by the Alzheimer's Disease Cooperative Study at the University of California, San Diego. 
ADNI data are disseminated by the Laboratory for Neuro Imaging at the University of Southern California.

References

1. Kety SS, Schmidt CF. The determination of cerebral blood flow in man by the use of nitrous oxide 
in low concentrations. Am J Physiol. 1945; 143:53–66.

2. Herscovitch P, Markham J, Raichle ME. Brain blood flow measured with intravenous H2(15)O. I. 
Theory and error analysis. Journal of nuclear medicine : official publication, Society of Nuclear 
Medicine. 1983; 24:782–789.

3. Detre JA, Wang J, Wang Z, Rao H. Arterial spin-labeled perfusion MRI in basic and clinical 
neuroscience. Current opinion in neurology. 2009; 22:348–355. [PubMed: 19491678] 

4. Mette D, Strunk R, Zuccarello M. Cerebral blood flow measurement in neurosurgery. Translational 
stroke research. 2011; 2:152–158. [PubMed: 24323620] 

5. Detre JA, Leigh JS, Williams DS, Koretsky AP. Perfusion imaging. Magnetic resonance in 
medicine : official journal of the Society of Magnetic Resonance in Medicine / Society of Magnetic 
Resonance in Medicine. 1992; 23:37–45.

Dolui et al. Page 13

J Magn Reson Imaging. Author manuscript; available in PMC 2018 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.fnih.org


6. Williams DS, Detre JA, Leigh JS, Koretsky AP. Magnetic resonance imaging of perfusion using spin 
inversion of arterial water. Proceedings of the National Academy of Sciences of the United States of 
America. 1992; 89:212–216. [PubMed: 1729691] 

7. Alsop DC, Detre JA. Reduced transit-time sensitivity in noninvasive magnetic resonance imaging of 
human cerebral blood flow. Journal of cerebral blood flow and metabolism : official journal of the 
International Society of Cerebral Blood Flow and Metabolism. 1996; 16:1236–1249.

8. Buxton RB, Frank LR, Wong EC, Siewert B, Warach S, Edelman RR. A general kinetic model for 
quantitative perfusion imaging with arterial spin labeling. Magnetic resonance in medicine : official 
journal of the Society of Magnetic Resonance in Medicine / Society of Magnetic Resonance in 
Medicine. 1998; 40:383–396.

9. Aslan S, Xu F, Wang PL, et al. Estimation of labeling efficiency in pseudocontinuous arterial spin 
labeling. Magnetic resonance in medicine : official journal of the Society of Magnetic Resonance in 
Medicine / Society of Magnetic Resonance in Medicine. 2010; 63:765–771.

10. Wong, EC. Potential and pitfalls of arterial spin labeling based perfusion imaging techniques for 
MRI. In: Bandettini CTWMaPA. , editor. Functional MRI. New York. 1999. p. 63-69.

11. Wong EC, Buxton RB, Frank LR. Implementation of quantitative perfusion imaging techniques for 
functional brain mapping using pulsed arterial spin labeling. NMR in biomedicine. 1997; 10:237–
249. [PubMed: 9430354] 

12. Dai W, Garcia D, de Bazelaire C, Alsop DC. Continuous flow-driven inversion for arterial spin 
labeling using pulsed radio frequency and gradient fields. Magnetic resonance in medicine : 
official journal of the Society of Magnetic Resonance in Medicine / Society of Magnetic 
Resonance in Medicine. 2008; 60:1488–1497.

13. Alsop DC, Detre JA, Golay X, et al. Recommended implementation of arterial spin-labeled 
perfusion MRI for clinical applications: A consensus of the ISMRM perfusion study group and the 
European consortium for ASL in dementia. Magnetic resonance in medicine : official journal of 
the Society of Magnetic Resonance in Medicine / Society of Magnetic Resonance in Medicine. 
2015; 73:102–116.

14. Gunther M, Oshio K, Feinberg DA. Single-shot 3D imaging techniques improve arterial spin 
labeling perfusion measurements. Magnetic resonance in medicine : official journal of the Society 
of Magnetic Resonance in Medicine / Society of Magnetic Resonance in Medicine. 2005; 54:491–
498.

15. Ye FQ, Frank JA, Weinberger DR, McLaughlin AC. Noise reduction in 3D perfusion imaging by 
attenuating the static signal in arterial spin tagging (ASSIST). Magnetic resonance in medicine : 
official journal of the Society of Magnetic Resonance in Medicine / Society of Magnetic 
Resonance in Medicine. 2000; 44:92–100.

16. Fernandez-Seara MA, Wang Z, Wang J, et al. Continuous arterial spin labeling perfusion 
measurements using single shot 3D GRASE at 3 T. Magnetic resonance in medicine : official 
journal of the Society of Magnetic Resonance in Medicine / Society of Magnetic Resonance in 
Medicine. 2005; 54:1241–1247.

17. Maleki N, Dai W, Alsop DC. Optimization of background suppression for arterial spin labeling 
perfusion imaging. MAGMA. 2012; 25:127–133. [PubMed: 22009131] 

18. Tan H, Maldjian JA, Pollock JM, et al. A fast, effective filtering method for improving clinical 
pulsed arterial spin labeling MRI. Journal of magnetic resonance imaging : JMRI. 2009; 29:1134–
1139. [PubMed: 19388118] 

19. Wang Z, Das SR, Xie SX, et al. Arterial spin labeled MRI in prodromal Alzheimer's disease: A 
multi-site study. NeuroImage Clinical. 2013; 2:630–636. [PubMed: 24179814] 

20. Wang Z, Aguirre GK, Rao H, et al. Empirical optimization of ASL data analysis using an ASL data 
processing toolbox: ASLtbx. Magnetic resonance imaging. 2008; 26:261–269. [PubMed: 
17826940] 

21. Wang Z. Improving cerebral blood flow quantification for arterial spin labeled perfusion MRI by 
removing residual motion artifacts and global signal fluctuations. Magnetic resonance imaging. 
2012; 30:1409–1415. [PubMed: 22789842] 

22. Wells JA, Thomas DL, King MD, Connelly A, Lythgoe MF, Calamante F. Reduction of errors in 
ASL cerebral perfusion and arterial transit time maps using image de-noising. Magnetic resonance 

Dolui et al. Page 14

J Magn Reson Imaging. Author manuscript; available in PMC 2018 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



in medicine : official journal of the Society of Magnetic Resonance in Medicine / Society of 
Magnetic Resonance in Medicine. 2010; 64:715–724.

23. Behzadi Y, Restom K, Liau J, Liu TT. A component based noise correction method (CompCor) for 
BOLD and perfusion based fMRI. NeuroImage. 2007; 37:90–101. [PubMed: 17560126] 

24. Maumet C, Maurel P, Ferre JC, Barillot C. Robust estimation of the cerebral blood flow in arterial 
spin labelling. Magnetic resonance imaging. 2014; 32:497–504. [PubMed: 24631716] 

25. Liang X, Connelly A, Calamante F. Improved partial volume correction for single inversion time 
arterial spin labeling data. Magnetic resonance in medicine : official journal of the Society of 
Magnetic Resonance in Medicine / Society of Magnetic Resonance in Medicine. 2013; 69:531–
537.

26. Asllani I, Borogovac A, Brown TR. Regression algorithm correcting for partial volume effects in 
arterial spin labeling MRI. Magnetic resonance in medicine : official journal of the Society of 
Magnetic Resonance in Medicine / Society of Magnetic Resonance in Medicine. 2008; 60:1362–
1371.

27. Fazlollahi A, Bourgeat P, Liang X, et al. Reproducibility of multiphase pseudo-continuous arterial 
spin labeling and the effect of post-processing analysis methods. NeuroImage. 2015; 117:191–201. 
[PubMed: 26026814] 

28. Miranda MJ, Olofsson K, Sidaros K. Noninvasive measurements of regional cerebral perfusion in 
preterm and term neonates by magnetic resonance arterial spin labeling. Pediatr Res. 2006; 
60:359–363. [PubMed: 16857776] 

29. Vidorreta M, Wang Z, Rodriguez I, Pastor MA, Detre JA, Fernandez-Seara MA. Comparison of 2D 
and 3D single-shot ASL perfusion fMRI sequences. NeuroImage. 2013; 66C:662–671.

30. Ashburner J. A fast diffeomorphic image registration algorithm. NeuroImage. 2007; 38:95–113. 
[PubMed: 17761438] 

31. Rousseeuw PJ, Croux C. Alternatives to the Median Absolute Deviation. Journal of the American 
Statistical Association. 1993; 88:1273–1283.

32. Alsop DC, Detre JA, Grossman M. Assessment of cerebral blood flow in Alzheimer's disease by 
spin-labeled magnetic resonance imaging. Annals of neurology. 2000; 47:93–100. [PubMed: 
10632106] 

33. Du AT, Jahng GH, Hayasaka S, et al. Hypoperfusion in frontotemporal dementia and Alzheimer 
disease by arterial spin labeling MRI. Neurology. 2006; 67:1215–1220. [PubMed: 17030755] 

34. Chen Y, Wolk DA, Reddin JS, et al. Voxel-level comparison of arterial spin-labeled perfusion MRI 
and FDG-PET in Alzheimer disease. Neurology. 2011; 77:1977–1985. [PubMed: 22094481] 

35. Leys L, Ley C, Klein O, Bernard P, Licata L. Detecting outliers: Do not use standard deviation 
around the mean, use absolute deviation around the median. Journal of Experimental Social 
Psychology. 2013; 49:764–766.

36. Martin AJ, Friston KJ, Colebatch JG, Frackowiak RS. Decreases in regional cerebral blood flow 
with normal aging. Journal of cerebral blood flow and metabolism : official journal of the 
International Society of Cerebral Blood Flow and Metabolism. 1991; 11:684–689.

37. Viviani R. Unbiased ROI selection in neuroimaging studies of individual differences. NeuroImage. 
2010; 50:184–189. [PubMed: 19900563] 

38. Heijtel DF, Mutsaerts HJ, Bakker E, et al. Accuracy and precision of pseudo-continuous arterial 
spin labeling perfusion during baseline and hypercapnia: a head-to-head comparison with (1)(5)O 
H(2)O positron emission tomography. NeuroImage. 2014; 92:182–192. [PubMed: 24531046] 

Dolui et al. Page 15

J Magn Reson Imaging. Author manuscript; available in PMC 2018 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 1. 
(LEFT) Mean CBF in a representative slice from all label/control pairs for a particular 

subject; (MIDDLE) the most structurally correlated pair to the mean CBF; and (RIGHT) 

Output of SCORE after discarding 18 CBF volumes based on structural correlation.
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Fig. 2. 
Plot of mean CBF in grey matter in different volumes of the CBF time series of a 

representative subject along with median ± 2.5 robsd thresholds. Robsd stands for robust 

standard deviation and is computed as 1.4826 × median absolute deviation.
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Fig. 3. 
Flow chart of SCORE+
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Fig. 4. 
CBF maps from 4 subjects obtained with the reference algorithms, SCORE, and SCORE+. 

The CBF map of Subject 1 shows no visible artifact and all the algorithms performed 

comparably. The CBF maps of subjects 2,3 and 4 obtained from each of the reference 

algorithms have visible artifacts manifested by negative CBF values (indicated by yellow 

arrows). SCORE and SCORE+ showed reduced artifact in the resulting maps. However, 

artifacts indicated by red arrows in the CBF maps of subject 2 are not removed by any of the 

algorithms.
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Fig. 5. 
(TOP) Box plots of coefficients of variation (CV) for test-retest of CBF values in grey matter 

(GM), whole brain (global), hippocampus (HP), posterior cingulate cortex (PCC), precuneus 

(PCN), and primary motor cortex (M1) obtained using different algorithms. (BOTTOM) 

wsCV for different ROIs and for each method. The error bars show the standard errors in 

each case.
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Figure 6. 
Effect sizes in Control-AD discrimination based on CBF in precuneus, posterior cingulate 

cortex (PCC), hippocampus and motor cortex (M1). The error bars show the standard errors 

in each case. SCORE produced largest effect sizes compared to the reference algorithms.
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Table 1

Abbreviations of the reference algorithms.

Reference algorithms Abbreviations

Simple Average SA

Mean and standard deviation based filter18 MSD

Huber’s M-estimation24 HME

Nuisance Cleaning27 NC

Adaptive Outlier Cleaning19 AOC
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Table 2

ROI CBF values and effect sizes for patient-control differences for the evaluated signal processing strategies 

(Mean±standard deviation and other statistics as specified)

Mean CBF
in Control

Mean CBF
in AD

Effect
Size

p value in
two

sample T
test

Precuneus

SA 21.22±8.83 16.80±10.61 0.46 0.019

MSD 21.52±9.38 16.34±10.73 0.52 0.008

HME 21.75±8.85 16.81±10.86 0.50 0.010

NC 22.43±8.86 18.19±11.93 0.41 0.036

AOC 21.91±8.88 18.28±11.52 0.36 0.066

SCORE 21.52±9.28 16.31±10.50 0.53 0.007

SCORE+ 22.01±9.15 15.71±10.03 0.66 0.001

PCC

SA 30.57±12.10 26.38±15.00 0.31 0.109

MSD 30.92±11.83 25.62±14.30 0.41 0.037

HME 30.92±12.25 26.12±15.53 0.35 0.074

NC 32.34±12.46 28.08±15.80 0.30 0.118

AOC 31.75±12.65 28.00±15.95 0.26 0.174

SCORE 31.55±10.79 26.09±12.08 0.48 0.014

SCORE+ 31.93±10.66 25.77±11.83 0.55 0.005

Hippocampus

SA 26.43±8.65 22.17±7.88 0.51 0.009

MSD 26.87±8.10 22.02±7.24 0.63 0.002

HME 26.54±8.32 22.11±7.64 0.55 0.005

NC 27.81±9.08 23.58±8.32 0.48 0.014

AOC 27.63±8.91 23.64±8.40 0.46 0.019

SCORE 26.24±7.91 21.70±7.21 0.60 0.002

SCORE+ 26.43±7.83 21.63±6.46 0.66 0.001

Motor Cortex

SA 21.89±11.71 19.36±12.11 0.21 0.272

MSD 22.15±11.81 19.32±11.38 0.24 0.209

HME 22.25±11.75 19.58±11.56 0.23 0.236

NC 22.98±11.77 21.09±13.29 0.15 0.434

AOC 22.26±11.73 21.08±12.86 0.10 0.616

SCORE 21.86±11.37 19.05±11.15 0.25 0.199

SCORE+ 22.43±11.42 19.20±10.95 0.29 0.139
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